Metadaten

Schneidt, Max; Heidelberger Akademie der Wissenschaften / Mathematisch-Naturwissenschaftliche Klasse [VerfasserIn] [Editor]
Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1928, 17. Abhandlung): Kurvennetze ohne Umwege — Berlin, 1928

DOI Page / Citation link: 
https://doi.org/10.11588/diglit.43559#0003
License: Free access  - all rights reserved
Overview
Facsimile
0.5
1 cm
facsimile
Scroll
OCR fulltext
Kurvennetze ohne Umwege.

§ 1. Die Differentialgleichung der Kurvenscharen, die zusammen
mit einer gegebenen Kurvenschar ein Netz ohne Umwege bilden.

Es sei eine Fläche durch die Gleichungen gegeben:
x = x (u, f) y = y (u, f) s = z (u, t)
Wir setzen in bekannter Bezeichnung:

9® dx dy ,
9 a 9i '' du dt du dt

Soll auf der Fläche eine Kurvenschar v — Const gefunden werden, die
mit der Schar w = Const ohne Umwege ist, so setzen wir t = t (u, v),
wodurch die Schar u = Const unverändert bleibt.
Dann wird:


^)!=£ + 2F.Z1 + G.z?,wo -

(dx\2_ fdx dt \2_
—*\dv) ~ dv/
Die Bedingung dafür, daß u = Const
sind, ist dann bekanntlich:

(t G22,

l2~dv’

und v = Const ohne Umwege


Bezeichnen <P1 und 0.2 die partiellen Ableitungen einer Funktion 0 («, -y)
nach u und v, so genügt es also, zu setzen:
E + 2 F-tr + G-t.2 = -
Es folgt: 02 = UU • du G • d t, wobei U eine will-
kürliche Funktion von u bedeutet.
Danach wird:
E+2,F-tl +G-ti'‘ = i>^ -
 
Annotationen
© Heidelberger Akademie der Wissenschaften