Metadaten

Vogt, Heinrich; Ptolemaeus, Claudius; Heidelberger Akademie der Wissenschaften / Philosophisch-Historische Klasse [Editor]
Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Philosophisch-Historische Klasse (1920, 15. Abhandlung): Griechische Kalender, 5: Der Kalender des Claudius Ptolemaeus — Heidelberg, 1920

DOI Page / Citation link: 
https://doi.org/10.11588/diglit.37782#0010
License: Free access  - all rights reserved
Overview
Facsimile
0.5
1 cm
facsimile
Scroll
OCR fulltext
10

Heinrich Vogt:

man mit Recht die wahren Mit-Kulminationen, Mit-Auf- und -Unter-
gänge bestimmte. Gegen diesen durch 5 Jahrhunderte verschlepp-
ten Irrtum eben wendet sich Ptolemäus. Man hatte übersehen
erstens, daß derselbe Ekliptikbogen von 15 Grad nicht für alle
Sterngrößen, zweitens nicht für alle Elongationen, drittens nicht
für alle Lagen der Ekliptik gegen den Horizont gelten kann. Diese
15 Grad Ekliptikbogen bedeuten z. B. für Syene einen wahren
Sehungsbogen zwischen 15° und 10°, für Rhodus zwischen 14°,7
und 7°,5 für Mitte Pontus zwischen 14° und 5,3°, je nach dem
Schnittwinkel der Ekliptik mit dem Horizont, welcher von der
geographischenBreite und der Jahreszeit abhängt. Die Nächte
der sichtbaren Aufgänge und Untergänge eines Sterns fallen stets
in diametrale Jahreszeiten und haben meist verschiedene Dauer, sie
werden durch die tägliche Verbrühung der Sternzeit gegen die Sonnen-
zeit um rund 4 Minuten meist in ungleichen Zeiten durchmessen.
Berechnung von Ptol. Sehungsbogen. Hat nun Ptole-
mäus in der Theorie radikal mit jeder Annahme eines festen
Ekliptik- oder Sehungsbogens gebrochen, so tut man ihm Gewalt
an, wenn man voraussetzt, daß er praktisch mit festen Mittel-
werten gearbeitet hat. Eine rein sachliche Prüfung des Ptole-
mäischen Fixsternkalenders darf nicht irgendwelche Voraussetzung
von außen her an ihn herantragen. Ich rechne deshalb gemäß der
vorhandenen Überlieferung die von Ptolemäus benutzten Sehungs-
bogen für jeden Stern und jede Phase in jeder Breite einfach aus;
Sind diese bekannt, so wird es möglich sein, die Lücken der Über-
lieferung auszufüllen und ihre Fehler zu korrigieren; kurz gesagt,
den Text so wiederherzustellen, wie Ptolemäus ihn vermutlich ge-
schrieben hat; — nicht etwa, ihn zu verbessern. Dies stelle ich
mir als erste Aufgabe. Mit der Kenntnis der Sehungsbogen und
des vollständigen, möglichst ursprünglichen Textes ausgerüstet, kön-
nen wir weiter an die Beantwortung der Fragen herantreten: Hat
Ptolemäus die Verteilung von Beobachtung und Rech-
nung, die er theoretisch fordert, praktisch durchge-
führt? Wie verteilen sich Beobachtung und Rechnung
auf die 5 Breiten ? Welche Zuverlässigkeit und Genauig-
keit haben seine Beobachtung und seine Rechnung?
Hat er außer ihnen noch andere Hilfsmittel, wie Über-
lieferung oder Globusablesung benutzt?
Der Nachrechnung sind durchaus die Ptolemäischen Angaben
zugrunde zu legen.
 
Annotationen
© Heidelberger Akademie der Wissenschaften