Metadaten

Ramsauer, Carl; Heidelberger Akademie der Wissenschaften / Mathematisch-Naturwissenschaftliche Klasse [Editor]
Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse: Abteilung A, Mathematisch-physikalische Wissenschaften (1914, 19. Abhandlung): Über eine direkte magnetische Methode zur Bestimmung der lichtelektrischen Geschwindigkeitsverteilung — Heidelberg, 1914

DOI Page / Citation link: 
https://doi.org/10.11588/diglit.37442#0014
License: Free access  - all rights reserved
Overview
Facsimile
0.5
1 cm
facsimile
Scroll
OCR fulltext
14 (A. 19)

C. Ramsauer:

Frage: Angenommen, daß diese Kurve die wahre Geschwindigkeits-
verteilung darstellt, wie würde sie bei einer Flächengröße von
2X6 mm für F^, Fg, Fg und einem mittleren Radius von 5 mm
in der experimentellen Bestimmung geändert erscheinen ? Da es
hierbei nur auf die Änderung ankommt, so wollen wir 0,1 Ampere
mit 1,0 Gauss (statt 1,05 Gauss) identifizieren.
Diese Frage wurde graphisch behandelt. Die Kurve wurde
in 22 Teilabschnitte zerlegt und die dem mittleren H jedes Ab-
schnitts entsprechende Geschwindigkeit als für den ganzen
Abschnitt geltend angesehen. Es wurde dann analog Fig. 7 die-
jenige Kurve konstruiert, welche bei der betreffenden einheitlichen
Geschwindigkeit infolge der geometrischen Abmessungen ent-
stehen würde, wobei die Höhe der Kurve so gewählt wurde, daß
ihr Flächeninhalt dem Inhalt des betreffenden Teilabschnitts
proportional war. Endlich wurden die Flächenstücke aller Kur-
ven, die sich mehr oder minder in den betreffenden Teilabschnitt
erstreckten, addiert und aus den Summen die Ordinaten für die
mittlere Abszisse des Abschnitts berechnet. Das Resultat ist
als punktierte Linie in Fig. 8 dargestellt; das Maximum ist hierbei
gleich 100 gesetzt. Wir erhalten so folgendes Gesamtergebnis:
1. Die experimentell gefundene Kurve kann selbst bei Schlitz-
breiten von 2 mm im großen und ganzen mit der wahren Ge-
schwindigkeitsverteilungskurve identifiziert werden.
2. Die absoluten Abweichungen müssen um so größer
ausfallen, je größer bei gleicher Kurvenform die Abszisse des
Maximums ist; die prozentualen Abweichungen bleiben nach
der ganzen Bildungsweise der Kurven stets die gleichen.
3. Die prozentualen Abweichungen sind folgende, wenn man
die gestrichelte Kurve als die experimentelle und die ausgezogene
Kurve als die ideale auffaßt:
a) Das wahre Maximum liegt etwa 5 weiter nach höheren
Feldstärken hin.
b) Die wahre Abszisse für denjenigen Punkt des Kurven-
anstieges, dessen Ordinate gleich der halben Maximalhöhe ist,
liegt um 7 % weiter nach höheren Feldstärken hin.
c) Der tatsächliche Endabfall ist steiler, als den experimentellen
Werten entspricht (dies gilt übrigens nur bei der Annahme eines
trisch zum Anstieg gestaltet wird, bezogen auf HA Letzteres hat den Zweck,
den Abfall steil zu machen und so die Fälschung an dieser Stelle möglichst
kraß hervortreten zu lassen.
 
Annotationen
© Heidelberger Akademie der Wissenschaften