Metadaten

Heidelberger Akademie der Wissenschaften / Mathematisch-Naturwissenschaftliche Klasse [Hrsg.]
Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse: Abteilung A, Mathematisch-physikalische Wissenschaften (1919, 12 Abhandlung): Über Integration von gewöhnlichen Differentialgleichungen durch Reihen: Teil 3 — Heidelberg, 1919

DOI Seite / Zitierlink: 
https://doi.org/10.11588/diglit.36502#0003
Lizenz: Freier Zugang - alle Rechte vorbehalten
Überblick
Faksimile
0.5
1 cm
facsimile
Vollansicht
OCR-Volltext
Die in den zwei vorausgehenden Noten ^ auseinandergesetzten
Integrationsmethoden sind spezielle Fälle einer sehr viel allgemei-
neren Methode, die auch das PiCARDsche Verfahren sukzessiver
Näherungen in sich schließt. Die Methode läßt sich auf Systeme
von mehreren Differentialgleichungen an wenden, und auch hier
sind gewisse Spezialfälle zur numerischen Integration besonders
geeignet. Daß die Anwendbarkeit der gleichen Methode auch vor
partiellen Differentialgleichungen nicht Halt macht, soll in einer
weiteren Note gezeigt werden.

§ 1-
Die Differentialgleichung
(L)
y=0

versuchen wir durch eine unendliche Reihe

(2.)


y - X t'A
/.=l

zu integrieren. Wird die Reihe (2.) formal in (1.) eingesetzt, so
ergibt sich zunächst:


X = X A (X J"
A=1 v=o \Ä=1 /

= x

(kj + kg -^ !
kJ kg! ... kJ

A,+A, + ...+A^ <kl' - -


i 2. und 8. Abh. dieses Jahrgangs; ich werde diese beiden Arbeiten im
folgenden mit I und II zitieren.

l*
 
Annotationen
© Heidelberger Akademie der Wissenschaften