Heidelberger Akademie der Wissenschaften [Hrsg.]
Jahrbuch ... / Heidelberger Akademie der Wissenschaften: Jahrbuch 2023
— 2023(2024)
Zitieren dieser Seite
Bitte zitieren Sie diese Seite, indem Sie folgende Adresse (URL)/folgende DOI benutzen:
https://doi.org/10.11588/diglit.71221#0383
DOI Kapitel:
D. Förderung des wissenschaftlichen Nachwuchses
DOI Kapitel:I. Preise der Akademie
DOI Artikel:Locatello, Francesco: New contributions in the field of machine learning
DOI Seite / Zitierlink:https://doi.org/10.11588/diglit.71221#0383
- Titelblatt
- 5-10 Inhaltsverzeichnis
-
11-194
A. Das akademische Jahr
-
11-43
I. Jahresfeier am 24. Juni 2023
- 11-12 Begrüßung durch den Präsidenten Bernd Schneidmüller
- 13-17 "Politik braucht Wissenschaft". Grußwort der Ministerin Petra Olschowsk
- 18-21 Grußwort von Christoph Markschies, Präsident der Union der deutschen Akademien der Wissenschaften
- 22-27 „Von Demut und vom Zweifeln in der Wissenschaft“. Bericht des Präsidenten
- 28-29 Kurzbericht der Sprecherin des WIN-Kollegs Katharina Jacob
- 30-42 Festvortrag von Matthias Kind: „Energieversorgung im Zeichen des Klimawandels“
- 43 Verleihung der Preise
-
44-110
II. Wissenschaftliche Vorträge
- 111-194 III. Veranstaltungen
-
11-43
I. Jahresfeier am 24. Juni 2023
- 195-246 B. Die Mitglieder
- 247-368 C. Die Forschungsvorhaben
-
369-430
D. Förderung des wissenschaftlichen Nachwuchses
-
369-383
I. Preise der Akademie
- 384 II. Die Junge Akademie|HAdW
-
385-413
III. Das WIN-Kolleg der Jungen Akademie|HAdW
- 386 Verzeichnis der WIN-Kollegiatinnen und -Kollegiaten des 7. Teilprogramms
- 387 Verzeichnis der WIN-Kollegiatinnen und -Kollegiaten des 8. Teilprogramms
- 388-392 Tag der interdisziplinären Wissenschaftskommunikation
- 393-403 Siebter Forschungsschwerpunkt. „Wie entscheiden Kollektive?“
- 404-413 Achter Forschungsschwerpunkt. „Stabilität und Instabilität von Zuständen – Schlüssel zum Verständnis von Umbrüchen, Wendepunkten und Übergangsphasen“
- 414-421 IV. Das Akademie-Kolleg der Jungen Akademie | HAdW
- 422-430 V. WIN-Konferenzen der Jungen Akademie | HAdW
-
369-383
I. Preise der Akademie
- 431-452 E. Anhang
Preise der Akademie
„New contributions in the fie/d of machine /earning"
A new frontier in machine learning research is to learn causal representations from
data that uncover underlying physical properties and natural laws. My research
aims to learn these causal representations through rigorous theoiy and scalable
algorithms. Unlike traditional machine learning techniques that only analyze cor-
relations, causal representations provide a deeper understanding of the data and
enable reasoning about the consequences of actions and events that we have not
obsei~ved. Overall, they contribute to the broader goal of developing robust, exp-
lainable, and fair machine learning models that can also inform human decision-
making.
Aspecific area ofinterest in my research is disentangled representations, which
aim to identify independent factors ofvariation in a high-dimensional dataset com-
posed of independent samples. Our award-winning work explored the theoretical
and practical challenges of this task. Against prior belief, we found that this is the-
oretically impossible without any access to supei~vision or additional assumptions,
which we also confirmed through a large-scale empirical study. As a way forward,
we advocated for incorporating the natural assumption that real-world data is ne-
ver independently sampled but is subject to temporal structure and allows for ac-
tions. These concepts are now commonly used in causal representation learning
research and are continuing to find important applications in robotics, healthcare,
physical sciences, and engineering.
383
„New contributions in the fie/d of machine /earning"
A new frontier in machine learning research is to learn causal representations from
data that uncover underlying physical properties and natural laws. My research
aims to learn these causal representations through rigorous theoiy and scalable
algorithms. Unlike traditional machine learning techniques that only analyze cor-
relations, causal representations provide a deeper understanding of the data and
enable reasoning about the consequences of actions and events that we have not
obsei~ved. Overall, they contribute to the broader goal of developing robust, exp-
lainable, and fair machine learning models that can also inform human decision-
making.
Aspecific area ofinterest in my research is disentangled representations, which
aim to identify independent factors ofvariation in a high-dimensional dataset com-
posed of independent samples. Our award-winning work explored the theoretical
and practical challenges of this task. Against prior belief, we found that this is the-
oretically impossible without any access to supei~vision or additional assumptions,
which we also confirmed through a large-scale empirical study. As a way forward,
we advocated for incorporating the natural assumption that real-world data is ne-
ver independently sampled but is subject to temporal structure and allows for ac-
tions. These concepts are now commonly used in causal representation learning
research and are continuing to find important applications in robotics, healthcare,
physical sciences, and engineering.
383