Heidelberger Akademie der Wissenschaften [Editor]
Jahrbuch ... / Heidelberger Akademie der Wissenschaften: Jahrbuch 2019
— 2020
Cite this page
Please cite this page by using the following URL/DOI:
https://doi.org/10.11588/diglit.55176#0379
DOI chapter:
D. Förderung des wissenschaftlichen Nachwuchses
DOI chapter:II. Das WIN-Kolleg
DOI chapter:Sechster Forschungsschwerpunkt „Messen und Verstehen der Welt durch die Wissenschaft“
DOI chapter:8. Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI)
DOI Page / Citation link:https://doi.org/10.11588/diglit.55176#0379
- Schmutztitel
- Titelblatt
- Inhaltsverzeichnis
-
A. Das akademische Jahr 2019
-
11-48
I. Jahresfeier am 18. Mai 2019
- 11-12 Begrüßung durch den Präsidenten Thomas Holstein
- 13-15 Grußwort des Präsidenten der Deutschen Akademie der Naturforscher Leopoldina Jörg Hacker
- 16-21 Rechenschaftsbericht des Präsidenten
- 22-23 Kurzbericht der Sprecherin des WIN-Kollegs Daniela Mier: „JungeWissenschaft in der Akademie: das WIN-Kolleg“
- 24 Verleihung der Preise
-
49-80
II. Wissenschaftliche Vorträge
- III. Veranstaltungen
-
11-48
I. Jahresfeier am 18. Mai 2019
- B. Die Mitglieder
-
C. Die Forschungsvorhaben
- 223-224 I. Forschungsvorhaben und Arbeitsstellenleiter
-
225-331
II. Tätigkeitsberichte
- 225-228 1. Deutsche Inschriften des Mittelalters
- 229-234 2. Wörterbuch der altgaskognischen Urkundensprache (DAG)
- 234-240 3. Deutsches Rechtswörterbuch
- 240-242 4. Goethe-Wörterbuch (Tübingen)
- 242-246 5. Melanchthon-Briefwechsel
- 246-249 6. Altfranzösisches etymologisches Wörterbuch (DEAF)
- 250-255 7. Epigraphische Datenbank römischer Inschriften
- 255-260 8. Edition literarischer Keilschrifttexte aus Assur
- 261-267 9. Buddhistische Steininschriften in Nordchina
- 267-274 10. Geschichte der südwestdeutschen Hofmusik im 18.Jahrhundert (Schwetzingen)
- 275-287 11. The Role of Culture in Early Expansions of Humans (Frankfurt/Tübingen)
- 287-293 12. Nietzsche-Kommentar (Freiburg)
- 293-298 13. Klöster im Hochmittelalter: Innovationslabore europäischer Lebensentwürfe und Ordnungsmodelle (Heidelberg/Dresden)
- 299-305 14. Der Tempel als Kanon der religiösen Literatur Ägyptens (Tübingen)
- 306-310 15. Kommentierung der Fragmente der griechischen Komödie (Freiburg)
- 310-314 16. Kommentierung und Gesamtedition der Werke von Karl Jaspers sowie Edition der Briefe und des Nachlasses in Auswahl
- 314-318 17. Historisch-philologischer Kommentar zur Chronik des Johannes Malalas
- 319-325 18. Religions- und rechtsgeschichtliche Quellen des vormodernen Nepal
- 325-331 19. Theologenbriefwechsel im Südwesten des Reichs in der Frühen Neuzeit (1550–1620)
-
332-341
III. Drittmittel-geförderte Projekte
- 332-335 20. Nepal Heritage Documentation Project
- 335-338 21. Ludwik Fleck und seine ‚Denkkollektive‘: Der (Lemberger) Entstehungskontext seiner Ideen vom Denkstil und Denkkollektiv und ihre interdisziplinäre Rezeption
- 338-340 22. Individualisierung und Demokratisierung der Versorgung von Krebspatienten mittels künstlicher Intelligenz: transdisziplinäre Lösungen und normative Überlegungen
- 340-341 23. EUCANCan: a federated network of aligned and interoperable infrastructures for the homogeneous analysis, management and sharing of genomic oncology data for Personalized Medicine
-
D. Förderung des wissenschaftlichen Nachwuchses
-
I. Die Preisträger
- 343-344 Akademiepreis
- 345 Karl-Freudenberg-Preis
- 346 Walter-Witzenmann-Preis
- 347-348 Ökologiepreis der Viktor-und-Sigrid-Dulger-Stiftung
-
349-351
Manfred-Fuchs-Preis
- 349-350 Julia Burkhardt: „Von Bienen lernen. Das Bonum universale de apibus des Thomas von Cantimpré als Gemeinschaftsentwurf (Analyse, Edition, Übersetzung, Kommentar)“
- 350-351 Thomas Böttcher: „Virulenz krankheitserregender Bakterien, die Entwicklung neuer Antibiotika sowie die Untersuchung der chemischen Interaktionen zwischen Mikroorganismen“
-
II. Das WIN-Kolleg
- 352 Aufgaben und Ziele
- 353-354 Verzeichnis der WIN-Kollegiaten
-
355-385
Sechster Forschungsschwerpunkt „Messen und Verstehen der Welt durch die Wissenschaft“
- 355-357 1. Analyzing, Measuring and Forecasting Financial Risks by means of High-Frequency Data
- 358-363 2. Das menschliche Spiegelneuronensystem: Wie erfassen wir, was wir nicht messen können?
- 363-364 3. Quantifizierung in Politik und Recht am Beispiel von Wirtschaftssanktionen
- 365-368 4. Europäischer Datenschutz und Datenaustausch: interdisziplinäre Bedingungen und internationale Implikationen
- 369-372 5. CAL²Lab – Eine rechtslinguistische Experimentierplattform
- 373-375 6. „Working Numbers“: Science and Contemporary Politics
- 376-379 7. Thermischer Komfort und Schmerz – Untersuchungen zur Dynamik der Schmerz- und Komfortwahrnehmung
- 380-382 8. Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI)
- 383-384 9. Zählen und Erzählen. Spielräume und Korrelationen quantitativer und qualitativer Welterschließung
- 385 10. Metaphern und Modelle – Zur Übersetzung von Wissen in Verstehen
-
386-402
Siebter Forschungsschwerpunkt „Wie entscheiden Kollektive?“
- 386-388 11. Heiligenleben: Erzählte Heiligkeit zwischen Individualentscheidung und kollektiver Anerkennung
- 389-392 12. How does group composition influence collective sensing and decision making?
- 393-396 13. Fake News and Collective Decision Making. Rapid Automated Assessment of Media Bias
- 397-399 14. Heterogeneity and Convergence in Shared Data Sources – The Importance of Cognitive Coherence in Collective Decision Making
- 400-402 15. Ein transdisziplinäres Modell zur Struktur- und Musterbildung kollektiven Entscheidens: Synergieeffekte zwischen linguistischen, biologischen und physikalischen Ansätzen
- 403-406 III. Das Akademie-Kolleg
-
IV. Akademiekonferenzen
-
I. Die Preisträger
- 415-440 E. Anhang
- 447-455 Personenregister
D. Förderung des wissenschaftlichen Nachwuchses
8. Charakterisierung von durchströmten Gefäßen und der
Hämodynamik mittels modelt- und simulationsbasierter
Ftuss-MRt (CFD-MRI)
Kollegiat: Mathias Joachim Krause1
Mitarbeiter: Albert Mink1, Peter Weisbrod1, Fabian Klemens1, Jonathan
Jeppener-Haltenhoff1, Benjamin Förster1
1 Lattice Boltzmann Research Group (LBRG), Karlsruher Institut für Technologie (KIT)
Einleitung zum Vorhaben
Im Herbst 2014 nahm das Forschungsteam um den Kollegiaten seine fast fünfjäh-
rige Tätigkeit auf Während die grundlegende Methodenentwicklung in der ersten
Förderphase bis Mai 2017 im Vordergrund stand, erfolgten in der zweiten Phase
bis Mai 2019 die Weiterentwicklung und schließlich die Erforschung der Anwend-
barkeit der Methode im medizinischen Bereich. Der Bericht bezieht sich auf das
Gesamtvorhaben und fasst die Ergebnisse zusammen.
1. Gegenstand des Forschungsprojektes und Zielsetzung
Für viele medizinische Anwendungen ist die genaue Kenntnis der Strömungs-
dynamik eine Grundvoraussetzung für Diagnostik, Medikation und Operations-
planung. Genaue Strömungsdaten sind jedoch mit aktueller Mess- und Simulati-
onstechnik nicht in der gewünschten Genauigkeit verfügbar. Die Kopplung von
Simulation und Messung (CFD-MRI) deutet jedoch daraufhin, dass bei der Er-
fassung der Strömungsdynamik in komplexen patientenindividuellen Gefäßgeo-
metrien erhebliche Fortschritte zu erwarten sind.
2. Grundlegende Methodenentwicklung
Bei der CFD-MRI wird zunächst eine Strömungsflussmessung mit einer Mag-
netresonanztomographie (MRI) durchgeführt. Die im Allgemeinen verrauschten
Messergebnisse stellen zeitlich und örtlich gemittelte Durchschnittswerte dar und
sind zugleich Lösung eines Strömungsproblems, welches durch ein mathemati-
sches Modell beschrieben werden kann. Die Kenntnis des Modells macht sich das
CFD-MRI Verfahren zu Nutze, um zum einen das Rauschen durch numerische
Strömungssimulation (CFD, engl. computational fluid dynamics) herauszurech-
nen und zum anderen von Durchschnittsbildung ausgehend auf feine Strukturen
der Geometrie zu schließen. Man erhält so ein fein aufgelöstes Bild der Strömungs-
geschwindigkeiten mit zugehöriger Geometrie, welches den Messergebnissen
entspricht, Messartefakte aber eliminiert und in Bezug auf das Strömungsmodell
sinnvoll ist. Zur Realisierung der Methode wurde ein neues effizientes numeri-
380
8. Charakterisierung von durchströmten Gefäßen und der
Hämodynamik mittels modelt- und simulationsbasierter
Ftuss-MRt (CFD-MRI)
Kollegiat: Mathias Joachim Krause1
Mitarbeiter: Albert Mink1, Peter Weisbrod1, Fabian Klemens1, Jonathan
Jeppener-Haltenhoff1, Benjamin Förster1
1 Lattice Boltzmann Research Group (LBRG), Karlsruher Institut für Technologie (KIT)
Einleitung zum Vorhaben
Im Herbst 2014 nahm das Forschungsteam um den Kollegiaten seine fast fünfjäh-
rige Tätigkeit auf Während die grundlegende Methodenentwicklung in der ersten
Förderphase bis Mai 2017 im Vordergrund stand, erfolgten in der zweiten Phase
bis Mai 2019 die Weiterentwicklung und schließlich die Erforschung der Anwend-
barkeit der Methode im medizinischen Bereich. Der Bericht bezieht sich auf das
Gesamtvorhaben und fasst die Ergebnisse zusammen.
1. Gegenstand des Forschungsprojektes und Zielsetzung
Für viele medizinische Anwendungen ist die genaue Kenntnis der Strömungs-
dynamik eine Grundvoraussetzung für Diagnostik, Medikation und Operations-
planung. Genaue Strömungsdaten sind jedoch mit aktueller Mess- und Simulati-
onstechnik nicht in der gewünschten Genauigkeit verfügbar. Die Kopplung von
Simulation und Messung (CFD-MRI) deutet jedoch daraufhin, dass bei der Er-
fassung der Strömungsdynamik in komplexen patientenindividuellen Gefäßgeo-
metrien erhebliche Fortschritte zu erwarten sind.
2. Grundlegende Methodenentwicklung
Bei der CFD-MRI wird zunächst eine Strömungsflussmessung mit einer Mag-
netresonanztomographie (MRI) durchgeführt. Die im Allgemeinen verrauschten
Messergebnisse stellen zeitlich und örtlich gemittelte Durchschnittswerte dar und
sind zugleich Lösung eines Strömungsproblems, welches durch ein mathemati-
sches Modell beschrieben werden kann. Die Kenntnis des Modells macht sich das
CFD-MRI Verfahren zu Nutze, um zum einen das Rauschen durch numerische
Strömungssimulation (CFD, engl. computational fluid dynamics) herauszurech-
nen und zum anderen von Durchschnittsbildung ausgehend auf feine Strukturen
der Geometrie zu schließen. Man erhält so ein fein aufgelöstes Bild der Strömungs-
geschwindigkeiten mit zugehöriger Geometrie, welches den Messergebnissen
entspricht, Messartefakte aber eliminiert und in Bezug auf das Strömungsmodell
sinnvoll ist. Zur Realisierung der Methode wurde ein neues effizientes numeri-
380